Integration using Trigonometric Substitution

When it comes to integrating functions that involve radicals or expressions like a2x2a^2-x^2, we often rely on trigonometric substitution to simplify the problem. Trigonometric substitution is a method that involves substituting a variable with a trigonometric function to make the integral easier to solve. In this article, we will explore how to use trigonometric substitution to evaluate integrals of the form:

a2x2 dx\int \sqrt{a^2-x^2} \ dx

Trigonometric Substitution

Trigonometric substitution is a technique used to simplify integrals by substituting the variable with a trigonometric function. In particular, when we have an integral of the form:

a2x2 dx\int \sqrt{a^2-x^2} \ dx

we can use the substitution x=asinθx = a\sin\theta or x=acosθx = a\cos\theta to simplify the problem. To determine which substitution to use, we need to look at the expression under the square root and compare it to the trigonometric identities:

sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1

If we have an expression of the form a2x2\sqrt{a^2-x^2}, we should use the substitution x=asinθx = a\sin\theta, which simplifies the expression to a2a2sin2θ=acosθ\sqrt{a^2-a^2\sin^2\theta} = a\cos\theta. On the other hand, if we have an expression of the form x2a2\sqrt{x^2-a^2}, we should use the substitution x=acosθx = a\cos\theta, which simplifies the expression to a2cos2θa2=asinθ\sqrt{a^2\cos^2\theta-a^2} = a\sin\theta.

Example

Let's apply these ideas to the integral:

a2x2 dx\int \sqrt{a^2-x^2} \ dx

Using the substitution x=asinθx = a\sin\theta, we have:

dx=acosθ dθdx = a\cos\theta \ d\theta

and

a2x2=a2a2sin2θ=acosθ\sqrt{a^2-x^2} = \sqrt{a^2-a^2\sin^2\theta} = a\cos\theta

Substituting these expressions into the integral, we get:

a2x2 dx=acos2θ dθ\int \sqrt{a^2-x^2} \ dx = \int a\cos^2\theta \ d\theta

Now, we can use the identity cos2θ=1+cos(2θ)2\cos^2\theta = \frac{1+\cos(2\theta)}{2} to simplify the integral further:

acos2θ dθ=a2(1+cos(2θ)) dθ\int a\cos^2\theta \ d\theta = \frac{a}{2}\int (1+\cos(2\theta)) \ d\theta

Integrating each term separately, we get:

a2x2 dx=a2(θ+12sin(2θ))+C\int \sqrt{a^2-x^2} \ dx = \frac{a}{2}(\theta+\frac{1}{2}\sin(2\theta)) + C

Substituting back for xx, we get:

a2x2 dx=a2(sin1xa+xa1x2a2)+C\int \sqrt{a^2-x^2} \ dx = \frac{a}{2}\left(\sin^{-1}\frac{x}{a}+\frac{x}{a}\sqrt{1-\frac{x^2}{a^2}}\right) + C

Conclusion

Trigonometric substitution is a powerful technique for evaluating integrals involving radicals or expressions like a2x2a^2-x^2. By substituting the variable with a trigonometric function, we can simplify the problem and use trigonometric identities to evaluate the integral. In particular, when we have an integral of the form a2x2 dx\int \sqrt{a^2-x^2} \ dx, we can use the substitution x=asinθx = a\sin\theta to simplify the problem.

三角関数代入を用いた積分[JA]